Copied to
clipboard

G = C32xD11order 198 = 2·32·11

Direct product of C32 and D11

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C32xD11, C33:2C6, C11:(C3xC6), (C3xC33):3C2, SmallGroup(198,5)

Series: Derived Chief Lower central Upper central

C1C11 — C32xD11
C1C11C33C3xC33 — C32xD11
C11 — C32xD11
C1C32

Generators and relations for C32xD11
 G = < a,b,c,d | a3=b3=c11=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 84 in 24 conjugacy classes, 18 normal (6 characteristic)
Quotients: C1, C2, C3, C6, C32, C3xC6, D11, C3xD11, C32xD11
11C2
11C6
11C6
11C6
11C6
11C3xC6

Smallest permutation representation of C32xD11
On 99 points
Generators in S99
(1 98 54)(2 99 55)(3 89 45)(4 90 46)(5 91 47)(6 92 48)(7 93 49)(8 94 50)(9 95 51)(10 96 52)(11 97 53)(12 67 56)(13 68 57)(14 69 58)(15 70 59)(16 71 60)(17 72 61)(18 73 62)(19 74 63)(20 75 64)(21 76 65)(22 77 66)(23 78 34)(24 79 35)(25 80 36)(26 81 37)(27 82 38)(28 83 39)(29 84 40)(30 85 41)(31 86 42)(32 87 43)(33 88 44)
(1 32 21)(2 33 22)(3 23 12)(4 24 13)(5 25 14)(6 26 15)(7 27 16)(8 28 17)(9 29 18)(10 30 19)(11 31 20)(34 56 45)(35 57 46)(36 58 47)(37 59 48)(38 60 49)(39 61 50)(40 62 51)(41 63 52)(42 64 53)(43 65 54)(44 66 55)(67 89 78)(68 90 79)(69 91 80)(70 92 81)(71 93 82)(72 94 83)(73 95 84)(74 96 85)(75 97 86)(76 98 87)(77 99 88)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)(34 40)(35 39)(36 38)(41 44)(42 43)(45 51)(46 50)(47 49)(52 55)(53 54)(56 62)(57 61)(58 60)(63 66)(64 65)(67 73)(68 72)(69 71)(74 77)(75 76)(78 84)(79 83)(80 82)(85 88)(86 87)(89 95)(90 94)(91 93)(96 99)(97 98)

G:=sub<Sym(99)| (1,98,54)(2,99,55)(3,89,45)(4,90,46)(5,91,47)(6,92,48)(7,93,49)(8,94,50)(9,95,51)(10,96,52)(11,97,53)(12,67,56)(13,68,57)(14,69,58)(15,70,59)(16,71,60)(17,72,61)(18,73,62)(19,74,63)(20,75,64)(21,76,65)(22,77,66)(23,78,34)(24,79,35)(25,80,36)(26,81,37)(27,82,38)(28,83,39)(29,84,40)(30,85,41)(31,86,42)(32,87,43)(33,88,44), (1,32,21)(2,33,22)(3,23,12)(4,24,13)(5,25,14)(6,26,15)(7,27,16)(8,28,17)(9,29,18)(10,30,19)(11,31,20)(34,56,45)(35,57,46)(36,58,47)(37,59,48)(38,60,49)(39,61,50)(40,62,51)(41,63,52)(42,64,53)(43,65,54)(44,66,55)(67,89,78)(68,90,79)(69,91,80)(70,92,81)(71,93,82)(72,94,83)(73,95,84)(74,96,85)(75,97,86)(76,98,87)(77,99,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)(56,62)(57,61)(58,60)(63,66)(64,65)(67,73)(68,72)(69,71)(74,77)(75,76)(78,84)(79,83)(80,82)(85,88)(86,87)(89,95)(90,94)(91,93)(96,99)(97,98)>;

G:=Group( (1,98,54)(2,99,55)(3,89,45)(4,90,46)(5,91,47)(6,92,48)(7,93,49)(8,94,50)(9,95,51)(10,96,52)(11,97,53)(12,67,56)(13,68,57)(14,69,58)(15,70,59)(16,71,60)(17,72,61)(18,73,62)(19,74,63)(20,75,64)(21,76,65)(22,77,66)(23,78,34)(24,79,35)(25,80,36)(26,81,37)(27,82,38)(28,83,39)(29,84,40)(30,85,41)(31,86,42)(32,87,43)(33,88,44), (1,32,21)(2,33,22)(3,23,12)(4,24,13)(5,25,14)(6,26,15)(7,27,16)(8,28,17)(9,29,18)(10,30,19)(11,31,20)(34,56,45)(35,57,46)(36,58,47)(37,59,48)(38,60,49)(39,61,50)(40,62,51)(41,63,52)(42,64,53)(43,65,54)(44,66,55)(67,89,78)(68,90,79)(69,91,80)(70,92,81)(71,93,82)(72,94,83)(73,95,84)(74,96,85)(75,97,86)(76,98,87)(77,99,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)(56,62)(57,61)(58,60)(63,66)(64,65)(67,73)(68,72)(69,71)(74,77)(75,76)(78,84)(79,83)(80,82)(85,88)(86,87)(89,95)(90,94)(91,93)(96,99)(97,98) );

G=PermutationGroup([[(1,98,54),(2,99,55),(3,89,45),(4,90,46),(5,91,47),(6,92,48),(7,93,49),(8,94,50),(9,95,51),(10,96,52),(11,97,53),(12,67,56),(13,68,57),(14,69,58),(15,70,59),(16,71,60),(17,72,61),(18,73,62),(19,74,63),(20,75,64),(21,76,65),(22,77,66),(23,78,34),(24,79,35),(25,80,36),(26,81,37),(27,82,38),(28,83,39),(29,84,40),(30,85,41),(31,86,42),(32,87,43),(33,88,44)], [(1,32,21),(2,33,22),(3,23,12),(4,24,13),(5,25,14),(6,26,15),(7,27,16),(8,28,17),(9,29,18),(10,30,19),(11,31,20),(34,56,45),(35,57,46),(36,58,47),(37,59,48),(38,60,49),(39,61,50),(40,62,51),(41,63,52),(42,64,53),(43,65,54),(44,66,55),(67,89,78),(68,90,79),(69,91,80),(70,92,81),(71,93,82),(72,94,83),(73,95,84),(74,96,85),(75,97,86),(76,98,87),(77,99,88)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32),(34,40),(35,39),(36,38),(41,44),(42,43),(45,51),(46,50),(47,49),(52,55),(53,54),(56,62),(57,61),(58,60),(63,66),(64,65),(67,73),(68,72),(69,71),(74,77),(75,76),(78,84),(79,83),(80,82),(85,88),(86,87),(89,95),(90,94),(91,93),(96,99),(97,98)]])

63 conjugacy classes

class 1  2 3A···3H6A···6H11A···11E33A···33AN
order123···36···611···1133···33
size1111···111···112···22···2

63 irreducible representations

dim111122
type+++
imageC1C2C3C6D11C3xD11
kernelC32xD11C3xC33C3xD11C33C32C3
# reps1188540

Matrix representation of C32xD11 in GL3(F67) generated by

2900
010
001
,
2900
0370
0037
,
100
0131
05625
,
6600
05831
0329
G:=sub<GL(3,GF(67))| [29,0,0,0,1,0,0,0,1],[29,0,0,0,37,0,0,0,37],[1,0,0,0,13,56,0,1,25],[66,0,0,0,58,32,0,31,9] >;

C32xD11 in GAP, Magma, Sage, TeX

C_3^2\times D_{11}
% in TeX

G:=Group("C3^2xD11");
// GroupNames label

G:=SmallGroup(198,5);
// by ID

G=gap.SmallGroup(198,5);
# by ID

G:=PCGroup([4,-2,-3,-3,-11,2883]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^11=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C32xD11 in TeX

׿
x
:
Z
F
o
wr
Q
<